Efficient Amplitude-Modulated Pulses for Triple- to Single-Quantum Coherence Conversion in MQMAS NMR
نویسندگان
چکیده
The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed "too challenging".
منابع مشابه
Fast radio-frequency amplitude modulation in multiple-quantum magic-angle-spinning nuclear magnetic resonance: Theory and experiments
Multiple-quantum magic-angle-spinning ~MQMAS NMR! spectroscopy has become a routine method to obtain high-resolution spectra of quadrupolar nuclei. One of the main problems in the performance of this experiment has been the poor efficiency of the radio-frequency pulses used in converting multiple-quantum coherences to the observable single-quantum signals. As the MQMAS experiment is basically a...
متن کاملSensitivity enhancement of the MQMAS NMR experiment by fast amplitude modulation of the pulses
Ž . We report here an improved way of doing the multiple-quantum magic-angle spinning MQMAS NMR experiment that relies on the use of amplitude modulated pulses. These pulses were found to yield MQMAS NMR signals that are Ž . considerably stronger f200–300% than the ones arising from the usual continuous wave pulse schemes by virtue of a superior efficiency of the tripleto single-quantum convers...
متن کاملSignal enhancement in the triple-quantum magic-angle spinning NMR of spins-3/2 in solids: the FAM-RIACT-FAM sequence.
We achieve a significant signal enhancement for the triple-quantum magic-angle spinning NMR of a spin-3/2 system, by using an amplitude-modulated radiofrequency field, followed by a selective 90 degrees pulse and a phase-shifted strong rf field, for the triple-quantum excitation, and an amplitude-modulated radiofrequency field for the conversion of triple-quantum coherence to observable single-...
متن کاملPure absorption-mode spectra using a modulated RF mixing period in MQMAS experiments.
Different approaches to obtain pure absorption-mode lineshapes in MQMAS experiments employing a train of 180 degrees phase-alternating pulses for the multiple-quantum to single-quantum mixing period are investigated. Four pulse sequences, which achieve this by using either the shifted-echo approach or the hypercomplex approach with symmetric coherence transfer pathways, are presented and their ...
متن کاملMultiple-quantum magic-angle spinning and dynamic-angle spinning NMR spectroscopy of quadrupolar nuclei.
Several aspects of the Multiple-Quantum Magic-Angle Spinning (MQMAS) technique (L. Frydman and J.S. Harwood, J. Am. Chem. Soc., 117 (1995) 5367) are compared with Dynamic-Angle Spinning (DAS). Examples of MQMAS spectra are shown for I = 3/2 nuclei with CQ up to 3.6 MHz, and for 27Al (I = 5/2) with CQ up to 10 MHz. The MQMAS linewidth is largely independent of the magnitude of the homonuclear di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 118 شماره
صفحات -
تاریخ انتشار 2014